Турбонаддув грузовых дизельных автомобилей

Недостатки турбонаддува:

Провал в разгонной динамике или «турбояма»

Суть этого явления заключается в том, что при разгоне с малых оборотов, вместо интенсивного ускорения, мы получаем вялую динамику, зачастую уступающую атмосферным аналогам. Дело в том, что работа турбонаддува напрямую связана с частотой вращения коленвала двигателя (при этом механической связи между этими элементами нет), и если эта величина невелика, то и эффективности от наддува не будет.

Кроме того, определённое влияние на этот процесс оказывает и большая инертность системы надува, поскольку для создания необходимого давления на впуске требуется определённое время. Для решения этой задачи проводится огромная работа, результаты которой уже позволили минимизировать продолжительность такого провала в динамике. Кроме того, переход на автоматическую трансмиссию или использование вариатора позволяет автомобилю автоматически при разгоне переходить на пониженную передачу, что сводит негативное явление к нулю.

Конструктивное решение вышеописанной проблемы инертности наддува сводится к внедрению одного из следующих механизмов:

— битурбонаддув (двойной наддув);— турбина с адаптивной геометрией;— комбинированный наддув.

Двойной турбонаддув (битурбонаддув) заключается в применении двух параллельных систем наддува и базируется на том принципе, что две небольшие турбины обладают меньшей инерцией, чем одна полноразмерная. Количество цилиндров, для которых каждая из этих турбин создаёт необходимое давление, делится между ними поровну. Разновидностью этой системы является использование нескольких компрессоров, активируемых на разных оборотах двигателя (каждый в своём рабочем диапазоне).

Турбина с адаптивной геометрией позволяет повысить эффективность системы за счёт оптимизации потока выхлопных газов путём изменения площади впускного канала.

Комбинированный наддув представляет собой систему, состоящую из механического нагнетателя, обеспечивающего необходимое давление на малых оборотах, и турбокомпрессора, включающегося в работу по достижении определённой частоты вращения коленвала.

Повышенная температура

Как уже упоминалось выше, сжатие воздуха неразрывно связано с его нагревом, что негативно сказывается на работе двигателя. Ввиду этого, необходимо вводить дополнительную систему охлаждения, которая также является потребителем вырабатываемой энергии.

Таким образом, турбонаддув является отличным способом повышения эффективности двигателя внутреннего сгорания за счёт оптимизации процесса сжигания топлива. Несмотря на все недостатки, это эффективный способ достижения высоких показателей мощности и экономичности. Кроме того, работы по совершенствованию этой системы наглядно демонстрируют, что несмотря на её многолетнюю историю, потенциал турбонаддува ещё не исчерпан.

Информационное издание: Новости гаи, дтп, штрафы пдд, ГИБДД, Экзамен ПДД онлайн. Техосмотр

Электрический наддув

Система электрического наддува разрабатывалась фирмой «Controlled Power Technologies» (в настоящий момент вошла в состав подразделения силовых агрегатов компании «Valeo») в течение трех лет.

В отличие от турбонаддува, где центробежный нагнетатель приводят в действие выхлопные газы, или механического наддува, где нагнетатель связан с коленчатым валом двигателя, в системах с электрическим наддувом нагнетатель вращается электромотором. Обычно подобные системы являются комбинированными, так как использование электрического и турбонаддува совместно даёт существенный выигрыш, позволяя избежать турбоямы на низких оборотах двигателя.

Система электрического наддува «Controlled Power Technologies»
Она совмещает в одном устройстве электрический и турбонагнетатель.

Компания «Audi» недавно представила систему электрического наддува, работающую по схеме, отличной от схемы «Controlled Power Technologies». Система «Audi» (на рис. ниже) использует двойной наддув: обычная турбина работает на средних и высоких оборотах, а электрическая — на малых, исключая турбояму.

Система электрического наддува «Audi»

В «Audi» собираются снабдить электрическим наддувом собственные дизельные моторы. На заводе компании уже собран пробный образец трехлитрового V6 TDI с подобным двойным наддувом. В системе задействован компактный электродвигатель, способный быстро раскрутить турбину до высоких скоростей. Возникновение дополнительного потребителя никак не должно отразиться на общем уровне энергопотребления, так как потери на раскрутку турбины перекроются при помощи системы рекуперации.

Внимание к электрическому наддуву в последнее время проявляют также компании «Ricardo», «Ford» и «BMW». Последняя недавно получила патент на электротурбину собственной конструкции, а компания «Ford» работает совместно с «Controlled Powertrain Technologies» и «Valeo» над трёхцилиндровым двигателем «Hyboost» с электронаддувом

«Valeo» станет первым поставщиком комплектующих, который предложит на рынок целый спектр электрических нагнетателей.

На рынке тюнинга существуют и так называемые осевые электрические нагнетатели, которые, как правило, входят в систему динамического наддува (читайте ниже). Движение воздуха в них осуществляется в осевом направлении. Один или пара последовательных либо параллельных вентиляторов с электромоторчиком, будучи установленными в воздушном тракте, проталкивают воздух вдоль себя назад, в фильтр или уже после него во впускной коллектор. Если такая система преодолевает хотя бы сопротивление фильтрующих элементов, эффект уже неплохой.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Как работает турбонаддув в машине

Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.

Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.

Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.

Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.

Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.

Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.

Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?

Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.

Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува

Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.

Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.

Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.

Нагнетатели типа «Лисхольм»

Схема нагнетателя типа «Лисхольм»

Следует также рассказать о винтовом нагнетателе или нагнетателе типа
«Лисхольм» («Lysholm»). Компрессоры данного типа иногда используются для
увеличения мощности двигателя. Первый в мире винтовой нагнетатель был изготовлен
и запатентован шведским инженером Альфом Лисхольмом в 1936 г. Он также как и
«Рутс» относится к роторным объёмным нагнетателям. Два ротора с
взаимодополняющими профилями захватывая поступающий воздух, начинают взаимное
встречное вращение. Порция воздуха проталкивается вперед вдоль роторов. Роторы
имеют между собой чрезвычайно малые зазоры — это обеспечивает высокую
эффективность и довольно малые потери. Основное отличие винтового компрессора от
объемных роторно-шестеренчатых нагнетателей – наличие внутреннего сжатия,
следовательно, не возникает дополнительной турбулентности как у
рутс-компрессоров. Это обеспечивает им высокую эффективность нагнетания
практически на всей шкале оборотов двигателя. Для достижения больших значений
давления может потребоваться охлаждение корпуса компрессора.

Нагнетатель типа «Лисхольм»

Основные плюсы нагнетателей типа «Лисхольм»: высокая эффективность (КПД
порядка 70%), надежность и компактная конструкция. Кроме того, винтовые
компрессоры довольно тихие при правильном проектировании и изготовлении. Здесь и
кроется единственный их минус. Дело в том, что роторы этих компрессоров имеют
очень сложную форму и, как следствие, дороги. По этой причине нагнетатели
«Лисхольм» практически не встречаются в массовом автомобильном производстве. По
той же причине и компаний, производящих эти прогрессивные нагнетатели, не так
много.

Преимущества турбонаддува:

Дополнительная «бесплатная» мощность

Принято считать, что установка дополнительной турбины на выпускном коллекторе двигателя внутреннего сгорания даст дополнительную энергию для вращения аналогичного устройства на впуске, что позволит вместо простого выброса выхлопных газов получить дополнительный источник энергии для турбонаддува.

Утверждение это довольно спорное, поскольку на протяжении десятилетий автомобильные инженеры боролись за снижение сопротивления выпуска, что в свою очередь снижает внутренние потери и повышает мощность мотора. Если вмонтировать в эту систему генерирующее устройство, то мы получим существенный рост сопротивления на выходе из мотора. Таким образом, турбонаддув – это не бесплатная дополнительная энергия, уместнее использовать понятие «дешёвая дополнительная энергия».

Механика этого процесса предельно проста. Турбокомпрессор, создающий избыточное давление на впуске, состоит из двух основных элементов – турбинное и компрессорное колесо. Турбинное колесо использует энергию выхлопных газов для того, чтобы создавать крутящий момент для компрессорного, которое и сжимает воздух. Сам компрессор встраивается в контур системы охлаждения двигателя, поскольку в процессе работы его температура достигает высоких величин. Для регулирования степени наддува используется перепускной клапан, который при необходимости может пускать часть выхлопных газов в обход турбины, чтобы снизить давление внутри системы.

Оптимизация соотношения массы двигателя и его веса

Переход на технологию турбонаддува позволил отказаться от необходимости увеличения рабочего объёма и количества цилиндров для повышения мощности двигателя. Это позволяет получить хорошие показатели от небольших и, соответственно, лёгких моторов, в результате чего уменьшается и снаряженная масса автомобиля, и, как следствие, возрастает динамика разгона и сокращается тормозной путь.

Экономичность

Если сравнивать показатели удельного расхода топлива турбированного мотора и атмосферного двигателя аналогичной мощности, то разница в пользу первого будет очевидна. Это обусловлено тем, что на один рабочий цикл затрачивается меньше топлива, за счёт повышения полноты его сгорания. Фактически мы имеем обеднённую смесь, негативные факторы которой полностью компенсируются избыточным давлением воздуха.

Принцип работы двигателя с турбонаддувом

Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.

Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.

Минусы двигателя с турбонаддувомО плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.

Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.

Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Типы привода, их достоинства и недостатки

Вторая проблема – привод нагнетателя, а он может быть:

  1. Механическим
  2. Газотурбинным
  3. Электрическим

В механическом приводе в действие нагнетатель приводится от коленчатого вала посредством ременной, реже – цепной, передачи. Такой тип привода хорош тем, что наддув начинает работать сразу после запуска силовой установки.

Но у него есть существенный недостаток – этот тип привода «забирает» часть мощности мотора. В результате получается замкнутый круг – нагнетатель повышает мощность, но сразу же ее и отбирает. Использоваться механический привод может со всеми типами наддувов.

Газотурбинный привод сейчас пока является самым оптимальным. В нем нагнетатель приводится в действие за счет энергии сгоревших газов. Этот тип привода используется только с центробежным наддувом. Нагнетатель с таким типом привода получил название турбонаддува.

Чтобы использовать энергию отработанных газов конструкторы, по сути, просто взяли два центробежных нагнетателя и соединили их крыльчатки одной осью. Далее один нагнетатель подсоединили к выпускному коллектору. Выхлопные газы, на выходе из цилиндров двигаются с высокой скоростью, попадают в нагнетатель и раскручивают крыльчатку (она получила название турбинное колесо). А поскольку она соединена с крыльчаткой (компрессорным колесом) второго нагнетателя, то он начинает выполнять требуемую задачу – нагнетать воздух.

Турбонаддув хорош тем, что не оказывает влияние на мощность двигателя. Но у него есть недостаток, причем существенный – на малых оборотах двигателя он из-за небольшого количества выхлопных газов не способен эффективно нагнетать воздух, он эффективен только на высоких оборотах. К тому же в турбонаддуве присутствует такой эффект как «турбояма».

Суть этого эффекта сводится к тому, что турбонаддув не обеспечивает мгновенную реакцию на действия водителя. При резком изменении режима работы двигателя, к примеру, при разгоне, на первом этапе энергии выхлопных газов недостаточно, чтобы наддув закачал требуемое количество воздуха, нужно время, чтобы в цилиндрах прошли процессы и повысилось количество отработанных газов. В результате при резком нажатии на педаль, машина «тупит» и не разгоняется, но как только наддув наберет обороты, авто начинает активно ускоряться – «выстреливает».

Есть и еще один не очень приятный эффект – «турболаг». У него суть примерно та же, что и у «турбоямы», но природа у него несколько другая. Сводится она к тому, что наддув обладает запоздалой реакцией на действия водителя. Обусловлена она тем, что нагнетателю требуется время захватить, закачать воздух и подать его в цилиндры.

Показательные графики эффектов «турбояма» и «турболаг» в зависимости от мощности

«Турбояма» появляется только в нагнетателях, работающих от энергии выхлопных газов, в устройствах же с механических приводом ее нет, поскольку производительность наддува пропорциональна оборотам двигателя. А вот «турболаг» присутствует во всех типах нагнетателей.

В современных автомобилях начинают внедрять электрические приводы наддува, но они только зарождаются. Пока их используют, как дополнительный механизм, для исключения «турбоямы» в работе турбонаддува. Не исключено что вскоре и появится разработка которая заменит привычные нам нагнетатели.

Электронагнетатель от фирмы Valeo

Для их эффективной работы необходимо более высокое напряжение, поэтому используется вторая сеть со своим аккумулятором на 48 вольт. Концерн Audi вообще планирует перевести все оборудование на повышенное напряжение – 48 вольт, так как увеличивается количество электронных систем и соответственно нагрузка на сеть автомобиля. Возможно в будущем все автопроизводители перейдут на повышенное напряжение бортовой сети.

Проблемы при оплате банковскими картами

Иногда при оплате банковскими картами Visa / MasterCard могут возникать трудности. Самые распространенные из них:

  1. На карте стоит ограничение на оплату покупок в интернет
  2. Пластиковая карта не предназначена для совершения платежей в интернет.
  3. Пластиковая карта не активирована для совершения платежей в интернет.
  4. Недостаточно средств на пластиковой карте.

Для того что бы решить эти проблемы необходимо позвонить или написать в техническую поддержку банка в котором Вы обслуживаетесь. Специалисты банка помогут их решить и совершить оплату.

Вот, в принципе, и все. Весь процесс оплаты книги в формате PDF по ремонту автомобиля на нашем сайте занимает 1-2 минуты.

Если у Вас остались какие-либо вопросы, вы можете их задать, воспользовавшись формой обратной связи, или написать нам письмо на [email protected].

Виды нагнетателей

Справедливости ради надо сказать, что первыми появились механические нагнетатели (kompressor, supercharger), которые приводятся в действие механической энергией вырабатываемой двигателем. Различают несколько типов механических нагнетателей: — центробежные, наиболее похожие на турбонаддув, поскольку воздух засасывается центробежной крыльчаткой; — нагнетатели типа «Рутс»(Roots), в котором воздух нагнетается двумя роторами, как в маслонасосе; — винтовые нагнетатели (Lysholm), по принципу похожие на Roots, но вместо двух роторов с лопастями применены винтовые роторы;


Компрессор Рутса


Компрессор Лисхольм


Центробежный компрессор

Плюсы механических нагнетателей: — начинают работать сразу, как только начинает работать двигатель — нет турбоямы; — прямая связь с оборотами двигателя — мгновенный отклик на нажатие педали газа; — отличная тяга на «низах»;

Минусы механических нагнетателей: — весьма существенно отнимают мощность у мотора (до 20%);

Есть и «электрический наддув» (электрокомпрессор), когда приводом компрессора служит электродвигатель. Но как правило такие нагнетатели устанавливаются не автономно, а в паре с турбонагнетателем.


Электрический нагнетатель

Плюсы электрических нагнетателей: — можно настроить программу оборотов под любой режим работы ДВС — нет «провалов»;

Минусы электрических нагнетателей: — для обеспечения требуемого потока воздуха необходим мощный электродвигатель, который потребляет много энергии;

Поскольку и у механических и у электрических нагнетателей есть один, но существенный минус — они требуют много дополнительной энергии для работы, то наибольшего распространения получили турбонагнетатели с приводом от выхлопных газов (турбокомпрессоры), которые такого недостатка лишены. Турбокомпрессор приводится в движение отработанными газами, которые все равно «выбрасываются» наружу.

Турбокомпрессор в разрезе:

Плюсы турбокомпрессоров: — нет потери мощности ДВС;

Минусы турбокомпрессоров: — задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма; — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват. — воздух в турбокомпрессоре сильно нагревается, для его дальнейшего использования необходимо дополнительное охлаждение; — требуется более качественное масло и более частая его замена;

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
История движения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: