Принцип работы схемы управления асинхронным двигателем с к.з. ротором с одного места включения
Схему можно условно разделить на силовую — это то что находится слева, и на схему управления — это то что находиться справа. Для начала на всю электрическую цепь нужно подать напряжение путём включения автомата QF. И напряжение подаются на неподвижные контакты пускателя и на цепь управления. Далее нажимаем кнопку пуска SB2, при этом действии напряжение подается на катушку пускателя и он втягивается и подаётся также напряжение на обмотки статора и электродвигатель начинает вращаться. Одновременно с силовыми контактами на пускателе замыкаются и блок-контакты КМ через которые подаётся напряжение на катушку пускателя и кнопку SB2 можно отпустить. На этом запуска уже окончен.
Рис.1 Схема управления асинхронным двигателем с к.з. ротором
Для того чтобы прекратить работу электродвигателя нужно нажать на кнопку SB1. Этим действием мы разрываем цепь управления и прекращается подача напряжения на катушку пускателя, и силовые контакты размыкаются и как следствие пропадает напряжение на обмотках статора, и он останавливается.
Реализация части управления
Включать и выключать эти три контактора можно разными способами, вот несколько:
- Три тумблера. Самый простой и дешевый способ. А что? Главное соблюсти алгоритм!
- Специальный переключатель 0 – Y – Δ. Его можно купить или собрать самостоятельно, из любого галетного или кулачкового, типа ПКП.
- Релейная схема с таймером. Её рассмотрим ниже.
- Управление от специализированного реле. Это отдельная статья, следите за новостями.
- Управление от универсального контроллера (PLC). Тут рассматривать нечего – это тот же 1 или 2 вариант, только управляет не человек, а программа.
Слаботочная часть может быть вообще гальванически развязана от силовой, например через трансформатор 380 /110 В или блок питания 220 / 24 VDC. Более того, вообще питаться от аккумулятора 12 В. Главное, чтобы напряжение катушек пускателей соответствовало. Что такое гальваническая развязка и почему она безопасна – читайте про систему заземления IT.
Короче, вот простейшая схема:
Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая
Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.
Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть через классическую схему с самоподхватом.
Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):
Практическая схема “Звезда-треугольник” с блокировкой
Блокировка реализована на НЗ контактах, подробно об этом и не только в статье про подключение двигателя при помощи магнитного пускателя. Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!
Это реальная схема, можно её применять. Если что не понятно – спрашивайте.
Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.
Подключение трехфазного двигателя через электронные устройства
Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.
Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:
- Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
- Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь.
- Частотные преобразователи – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.
Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:
10. Подключение трехфазного двигателя – общая схема с электронной силой
Схема включения асинхронного двигателя с фазным ротором
Рис. 3. Схема пуска асинхронного двигателя с фазным ротором
Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры. Одновременно напряжение подается как на силовые цепи, так и на управляющие — замыкается выключатель QF. При подаче напряжения реле времени (обозначены КТ1 и КТ2) в цепи управления срабатывают, размыкая свои контакты. После нажатия кнопки запуска (SB1) срабатывает контактор КМ3 и запускается двигатель с резисторами, которые введены в цепь ротора — в этот момент на контакторах КМ1 и КМ2 питания нет. При подключении контактора КМЗ, из-за потери питания, в цепи контактора КМ1 реле КТ1 замыкает контакт через интервал времени, заданный задержкой времени в реле КТ1. По истечению времени (двигатель разгоняется, ток ротора начинает падать) происходит включение контактора КМ1 — происходит шунтирование первой пусковой ступени резисторов. Ток снова возрастает. но по мере разгона его значение начинает уменьшаться. Одновременно с этим в цепи происходит размыкание реле КТ2, оно теряет питание и с выставленной выдержкой происходит замыкание контакта в цепи контактора КМ2. Происходит шунтирование второй ступени резисторов, включенных в цепь ротора. Двигатель работает в штатном режиме.
Где применяется реверс
Легче перечислить случаи, когда реверс не используется. Практически вся механика построена на передаче крутящего момента по часовой стрелке и наоборот. Сюда можно отнести:
- Бытовую технику: стиральные машины, аудиопроигрыватели.
- Электроинструмент: реверсивные дрели, шуруповерты, гайковерты.
- Станки: расточные, токарные, фрезерные.
- Транспортные средства.
- Спецтехнику: крановое оборудование, лебедки.
- Элементы автоматики.
- Робототехнику.
Ситуация, с которой чаще всего сталкивается обычный человек на практике, это необходимость собрать схему подключения реверса электродвигателя асинхронного переменного тока либо коллекторного мотора постоянного тока.
Разновидности простейших движков-трансформаторов
Движки переменного тока могут быть синхронными. Схема получается проще, а мотор дешевле. Хотя все асинхронные двигатели содержат статор, аналогичный синхронной машине, конструкция ротора определяет их существенное отличие от них. Его не нужно намагничивать тем или иным способом, как это делается в синхронном движке. Несмотря на отличия моделей асинхронных машин, конструкция их ротора — это эквивалент короткозамкнутой вторичной обмотки.
Самый простой вариант — короткозамкнутый ротор. Его можно просто отлить из ферромагнитного материала и обработать надлежащим образом. Сплавы на основе железа проводят электрический ток и взаимодействуют с магнитным полем. Цельнометаллическая конструкция обладает следующими преимуществами:
- наиболее проста в изготовлении и по этой причине обладает минимальной себестоимостью;
- лучше всего переносит усилия, возникающие при работе двигателя;
- хорошо разгоняется из-за эффективного взаимодействия магнитных полей.
Читать также: Отливка грузил в домашних условиях
Как преодолеваются недостатки болванки
Однако вполне очевидно то, что такой короткозамкнутый ротор будет не лучшим проводником для токов, индуцируемых статором. Сплавы железа проводят электроток заметно хуже алюминия или меди. Кроме этого ведь неспроста магнитопроводы трансформаторов изготавливают из стальных пластин, а не из цилиндрических болванок. Вихревые токи нагревают литой металл и уменьшают общую эффективность электроустановки. Поэтому недостатки массивности конструкции из железного сплава конструктивно учитывает наиболее эффективный двигатель с короткозамкнутым ротором.
В таком электродвигателе используются алюминиевые или медные детали. Функции применительно к созданию магнитного поля и проводимости тока конструктивно разделяются. Для получения переменного магнитного поля с малыми потерями по аналогии с трансформаторами применяются тонкие изолированные пластины. Каждая из них содержит выемки и по форме эквивалентна поперечному сечению ротора. Ее материалом является трансформаторная сталь.
Как получается беличье колесо (клетка)
После того как пластины собраны, получается цилиндр с канавками. Они образованы выемками, в которые укладываются стержни из алюминия или меди. На торцы цилиндра надеваются пластины или кольца из такого же металла, что и стержни, концы которых крепятся к ним. Каждая пара диаметрально противоположных стержней, таким образом, создает короткозамкнутый виток. Его сопротивление индуцируемому току гораздо меньше, чем у железного сплава. Стержни с пластинами выглядят, как беличья клетка.
Поэтому двигатель с короткозамкнутым ротором такой конструкции имеет меньше потерь и по этой причине широко распространен. Но сходство этого электромотора асинхронного электродвигателя короткозамкнутым ротором своим похожего на обычный нагруженный силовой трансформатор ограничено к применению в некоторых электросетях. Не каждая из них может выдержать большой пусковой ток. Если асинхронные электродвигатели с короткозамкнутым ротором будут стартовать одновременно, величина тока будет велика и сравнима с коротким замыканием.
В начале их пуска происходит процесс, аналогичный включению трансформатора с вторичной обмоткой, замкнутой накоротко. В этом начальном положении магнитное поле почти неподвижно, и в этой связи так называемое скольжение получается самым большим. Неподвижный короткозамкнутый ротор асинхронного двигателя создает при пуске наиболее мощное электромагнитное поле. Ведь он собран из листовой стали, отличающейся минимальными вихревыми потерями, а беличье колесо характеризуется минимальным электрическим сопротивлением.
9 комментариев
Изготовление таких электродвигателей производится в очень широком диапазоне мощностей, где номинал устройства может составлять всего лишь несколько ватт, а может иметь мощность и в десятки мегаватт. Разберем принцип работы всех этих схем.
Типовые схемы разомкнутых систем управления электродвигателями
После размыкания контакта реле времени РДТ схема приходит в исходное состояние, двигатель плавно останавливается. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя из двигателя выходит три провода , выведены наружу выходит шесть проводов , выведены в распределительную коробку в коробку выходит шесть проводов, из коробки три.
Буду знать, куда зайти, если нужна будет информация по запуску двигателя. При неподвижном роторе магнитные поля Фа и Фв создают одинаковые по величине, но противоположны по знаку крутящиеся моменты М1 и М2. Обмотка создает неподвижный в пространстве магнитный поток.
Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. В этом случае используются электромагнитные пускатели с катушками на напряжение , 48, 36 или 24 В. Основными положительными характеристиками короткозамкнутых асинхронных электродвигателей являются их высокая надежность, незначительная масса, компактность, более высокий срок службы, чем у двигателей внутреннего сгорания аналогичной мощности. Такая схема изображена на рис.
Реостатный пуск асинхронного двигателя с кз ротором.
Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. Анимация процессов, протекающих в схеме показана ниже. Рассмотренная схема является основой построения схем управления электродвигателями двухскоростных транспортеров подачи раскряжевочных агрегатов, сортировочных конвейеров и т.
Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Схема подключения двигателя по реверсивной схеме.
Эти двигатели просты в устройстве, обслуживании и ремонте. Запустить Вращающееся магнитное поле пронизывающее короткозамкнутый ротор Магнитный момент действующий на ротор Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Привод может иметь две скорости. По этому возможно нужно использовать какое-то устройство для плавного запуска, чтобы избавиться от пусковых токов. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента.
схемы включения асинхронного двигателя
Наша группа «ВКонтакте»
К недостаткам можно отнести риск короткого замыкания при подаче на два входа; двойным H-мостом, собранным на маломощной микросхеме. Но реле не сразу отпускает свой якорь, это произойдет после истечения выдержки времени. Автоматический выключатель F1 исключает возможность обрыва одной фазы от срабатывания защиты при однофазном коротком замыкании, как это бывает при установке предохранителей рис.
Принципы действия схем см. При перегрузках в цепи двигателя возникает повышенный ток, который проходит через тепловые реле РТ1, РТ2.
Схема возвращается в исходное положение.
Именно этот способ сочетает в себе легкость выполнения и достаточные показатели мощности, но не предполагает одновременную подачу на две единицы. Одновременно срабатывает реле Р7, которое своим контактом запитывает соленоидный вентиль СВ — происходит сообщение полости компрессора с магистралью.
Из схемы следует, что в цепь контактора К включен резистор Rэ, он уменьшает напряжение на катушке К и тем самым уменьшает ее нагрев после срабатывания контактора напряжение на нем можно понизить. Фото схем электродвигателя Типовые конфигурации и принципы действия электродвигателей Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей.
Шаговый режим работы двигателя создает благоприятные условия наладки.
Проверка проводных выходов и корпуса на короткое замыкание — застрахует от аварий.
Определение начала и конца обмоток трехфазного электродвигателя (простой способ)
См. также: Энергетический паспорт потребителя топливно энергетических ресурсов
Как проверить двигатель перед запуском
Перед тем, как запустить асинхронный двигатель в работу, желательно его проверить на работоспособность. С чего же начать?
Внешний осмотр двигателя. Проверьте, нет ли сколов, вмятин, покрутите вал двигателя. Он должен крутиться плавно и без рывков в обе стороны. Этим действием вы проверяете подшипники, на которых держится ротор двигателя. Если вал двигателя подклинивает, то на это могут быть несколько причин: разбиты посадочные места под подшипники, убитые подшипники, либо ротор затирает статор. Для того, чтобы выяснить причину, нужно будет полностью разобрать двигатель и выяснить реальную проблему. Если все ок, то двигаемся к следующему шагу.
Проверяем обмотки двигателя. Для этого берем мультиметр, ставим его на измерение сопротивления и проверяем сопротивление обмоток. Если обмотки подключены по схеме «звезда», то нам будет достаточно замерять сопротивление между клеммами, куда подается напряжение питания. Делается это в три этапа.
Раз.
Два.
Три.
Во всех трех случаях сопротивление должно быть одинаково. Допускается отклонение в несколько Ом.
Этими тремя действиями мы проверили обмотки нашего двигателя и убедились, что они все целые.
И заключительный шаг. Проверяем, не звонятся ли обмотки на землю. Так как все обмотки так или иначе соединяются между собой, достаточно будет встать щупом мультиметра на любую из обмоток, а вторым щупом встать на корпус двигателя. Переключатель на мультиметре поставить на измерение МОм.
В идеале должно получиться бесконечно большое сопротивление, в реале от 100 МОм и выше. Если сопротивление очень маленькое, что то около 1-10 Ом, то это означает, что какая-то из обмоток двигателя звонится на землю, что категорически недопустимо. На практике если же сопротивление меньше 1 МОм, то надо выяснить причину и устранить ее. Скорее всего в двигатель попала влага, грязь, либо произошел пробой диэлектрика медного провода. В этом случае поможет только полная разборка и визуальное выяснение причины.
Все те же самые операции применяются и к двигателю со схемой подключения «треугольник».
Большинство материала для статьи «асинхронный двигатель» было взято из видео ниже. Обязательно к просмотру.
Нереверсивная схема управления асинхронного двигателя.
Рисунок 1 — Простейшая схема асинхронного двигателя
Для подачи напряжения на управляющую и силовую цепь используется автоматический выключатель QF. Пуск асинхронного двигателя осуществляется кнопкой SB1 «Пуск”, которая замыкает свои контакты в цепи катушки магнитного пускателя КМ. Который срабатывая замыкает основные контакты силовой цепи статора. Вследствие чего электродвигатель М подсоединяется к питанию. В то же время в управляющей сети происходит замыкание блокирующего контакта КМ который шунтирует кнопку SB1.
Чтобы отключить асинхронный двигатель с кз ротором, необходимо нажать клавишу SB2 «Стоп». При этом питающая сеть контактора КМ размыкается и подача напряжения на статор прекращается. После этого нужно выключают автомат QF. Схема управления АД с кз предусматривает несколько защит:
- от КЗ — посредством автоматического выключателя QF и плавкими предохранителями FU;
- от перегрузок — посредством теплореле КК (при перегреве данные устройства отсоединяют контактор КМ, прекращая работу движка);
- нулевая защита — посредством магнитного пускателя КМ (при низком напряжении или его полном отсутствии контактор КМ оказывается незапитанным, размыкается и электродвигатель выключается).
Для подключения электродвигателя после срабатывания защитного механизма требуется снова надавить клавишу SB1.
Подключение трехфазного двигателя через ручной пускатель
4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА
Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.
Ручной пускатель двигателя с дополнительным контрольным контактом.
Вот что у него на боковой стенке:
Автомат защиты двигателя – характеристики на боковой стенке
Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.
В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.
Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.
Вид и функционирование реверсивной схемы на 220 В
На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):
- Блокирующие или блок-контакты,
- Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
- Контакты тепловой или токовой защиты (релейные элементы),
- Силовые контакты пускателей.
Вид реверсивной схемы на 220 В
Кроме этого, буквенно-числовыми обозначениями выделяются:
- МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
- Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
- М – электродвигатель.
Принцип функционирования
Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).
После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.
Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.
При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.
Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.
Защита от понижения напряжения сети
Защита от понижения напряжения сети основана на свойствах магнитного пускателя.
Если напряжение сети упадет ниже, чем 0,7UНОМ, то этого напряжения будет недостаточно
для того, чтобы удерживать контакты пускателя в замкнутом состоянии.
Электромагнит перестанет работать, что вызовет размыкание контактов KM1.2 и
приведет к размыканию цепи питания катушки пускателя. Даже если напряжение после
этого придет в норму, двигатель не включится, т.к. цепь питания катушки пускателя разомкнута.
Подбор устройств электроавтоматики
Подбор устройств электроавтоматики начинаем с анализа характеристик электродвигателя.
Характеристики двигателя 4А 112М4У3 взяты из источника и
приведены в таблице 3.1.
Схема подключения двигателя через магнитный пускатель
Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов
А в новых китайских простеньких станках используется и по сей день.
Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск” и “Стоп” , которые могут быть вынесены на пульт управления через 3 провода любой длины.
5. Схема подключения двигателя через пускатель с кнопками пуск стоп
Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).
Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.
Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.
Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.